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Abstract 
Hybrid processing of cellulosic biomass, composed of thermochemical-based pyrolysis of 
biomass into fermentative substrates followed by biochemical-based algal fermentation into 
lipid-rich biomass was developed. The hybrid process has proven an effective way for producing 
biofuel from lignocellulosic biomass. In this work, life cycle assessment and techno economic 
analysis were performed for algal fermentation of the acetic-acid rich stage fraction of bio-oil 
under different scales and fermentation conditions. These results will provide guidance for 
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INTRODUCTION 

Lignocellulosic biomass is a scalable non-food substrate for biodiesel production [Kim et al., 

2013; Brown et al., 2013]. Recently, hybrid processing of cellulosic biomass, composed of 

thermochemical-based pyrolysis of biomass into fermentative substrates followed by 

biochemical-based algal fermentation into lipid-rich biomass was developed [Jarboe et al., 

2011]. Hybrid processes focus on fast pyrolysis – fermentation to produce alcohols, lipids and 

other chemicals [Jarboe et al., 2011; Yi et al., 2012; Zhao et al., 2013; Layton et al., 2011; Lian 

et al., 2012; Lian et al., 2013]. These processes have many advantages, such as flexible 

feedstock, utilization of both carbohydrate and lignin, yields densified biomass (bio-oil) for easy 

transportation and storage, and does not require enzymes to produce sugars. However, the main 

challenge for fermentation of products of thermochemical processing is the inhibition of many 

contaminants containing pyrolytic substrates or syngas [Xiu et al., 2012; Jarboe et al., 2011]. 

Consequently, the complexity hinders the complete identification, detoxification and 

improvement of those substrates. Some work shows that alkaline treatment is effective for the 

detoxification of pyrolytic substrates while perfusion can alleviate the accumulation of 

contaminants in microorganism fermentation, which are helpful for the scaling up of hybrid 

processing of lignocellulosic biomass [Zhao et al., 2013]. 

Fast pyrolysis, one kind of pyrolysis, is able to produce bio-oil with higher quality and 

comparatively higher oil yield than other processes through a rapid thermal decomposition of 

biomass in the absence of oxygen [Goyal et al., 2008]. Bio-oil, the liquid product of fast 

pyrolysis, can be used to produce drop-in fuel directly via upgrading and refinery [Mortensen et 

al., 2011]. In addition, bio-oil can provide various substrates for microorganism fermentations to 

get bioethanol or other value-added products, like succinic acid and lipid [Jarboe et al., 2011; Yi 
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et al., 2012; Zhao et al., 2013; Layton et al., 2011; Lian et al., 2012; Lian et al., 2013]. However, 

high inhibition on fermentation, high water content, high viscosity, high ash content, high 

oxygen content and high corrosiveness, are the main barriers for bio-oil application [Xiu et al., 

2012; Jarboe et al., 2011].  

To effectively utilize raw bio-oil, a unique pyrolysis-product fractionating system was developed 

at Iowa State University [Pollard et al., 2012]. Fluidized with nitrogen at 500  in this system, 

raw bio-oil was separated into five stage fractions (SFs) with distinct chemical and physical 

properties. Stage fraction #1 (SF1) and stage fraction #2 (SF2) contain 3% to 5% levoglucosan, 

the anhydrosugar of glucose and substrate for bioethanol production. Other stage fractions 

contain notable acetic acid, which can be utilized by microalgae to produce lipids. The 

microalgae Chlamydomonas reinhardtiias, with the capability of heterotrophic growth on acetate 

[Chen et al., 1994; Chen et al., 1996] seems promising to utilize acetic acid- rich Stage Fraction 

#5 (SF5). Another advantage for this strain is that enhanced lipid content of C. reinhardtiias has 

been achieved by genetically modification [Li et al., 2010; Work et al., 2010].  

However, due to its complexity, SF5 has a significant inhibition on the growth performance of C. 

reinhardtiias. As a result, when C. reinhardtiias is cultured in Tris-Phosphate (TAP) medium, 

only 0.05 wt% or less of SF5 can be added and higher concentration of SF5 will eliminate any 

growth of this strain [Yi et al., 2012]. Nevertheless, more than 4.00% of SF5 treated via over 

liming can be fermented by C. reinhardtiias, with no pure acetic acid added [Zhao et al., 2013]. 

To further improve the fermentability of SF5, perfusion design is needed for fermenters. The 

advantages of perfusion operation design in substrates detoxification, biomass productivity and 

bio-product yield have been investigated previously [Wen et al, 2001; Wen et al, 2002a; Wen et 

al, 2002b; Wen et al, 2003]. In this work, perfusion for contaminants, common continuous and 
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perfusion – bleeding fermenters were compared via life cycle assessment (LCA) and techno 

economic analysis to get more knowledge for future commercialized fast pyrolysis –algal 

fermentation of lignocellulosic biomass. 

DESIGN BASIS 

    Plant size 

In the present work, the size of the SF5 fermenter is 2,000 cubic meters, or 528,344 gallons, for 

small scale design, 20,000 cubic meters for intermediate scale design and 200,000 cubic meters 

for large scale design. 

    Differences of three fermenters 

Figure 1 shows examples of perfusion, continuous and perfusion – bleeding fermentation 

procedures. Perfusion fermentation system adds a retention device to common continuous culture 

system to separate algal cells and cell - free medium [Wen et al, 2002a]. The biomass was 

returned to fermenter and spent contaminants – concentrated medium would be removed from 

the fermenter and sent to a wastewater treatment system. The flow rate was termed the perfusion 

rate. Perfusion fermentation can help the cells to adapt to medium with high concentrations of 

inhibitors; however, it will decrease the biomass productivity and continuous algae harvest 

cannot be carried out in this system. Perfusion – bleeding adds another retention device to 

continuously harvest algal cells to perfusion system [Wen et al, 2001]. The flow rate during 

harvest procedure was named the bleeding rate. Perfusion – bleeding system shows higher 

productivities than other culture systems. Both perfusion and perfusion – bleeding systems need 

more labors for operation than continuous culture system. The data from literature about the best 

operation conditions for microalgal fermentation via each of these three systems are listed in 

table 1. 
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    SF5 concentration and lime usage 

Based on the test of fermentability of treated SF5 in our lab, 5.00% of treated SF5 can be 

fermented in batch culture, which will supply 4 g/L of acetic acid for the microalgae. Perfusion 

culture needs higher initial substrate concentration than continuous and perfusion – bleeding 

culture. As a result, acetic acid and SF5 concentration for three different fermenters were 

designed as 4, 2, 2 g/L, and 50, 25, 25 g/L, respectively. The quantity of Ca(OH)2 needed in 

over-liming treatment was obtained in our lab, which was 1 g per g SF5. 

    Biodiesel productivity and properties 

The productivity of biomass was based on reference data, 2.09, 2.82 and 6.75 g*L-1*day-1 for 

perfusion, continuous and perfusion – bleeding culture. In previous research on batch culture 

systems, lipid concentration in this strain was ~10% when cultured with acetic acid provided 

from treated SF5. The weight loss of biodiesel during cell harvest and oil extraction was made up 

via oil transesterification. Hence the productivity of biodiesel for each system would be 

calculated.  In this work, the biodiesel productivities for the three systems were calculated as 

498, 672 and 1609 kg/day, respectively. The combustion property of biodiesel was investigated 

with reasonable assumptions in previous work, and was assumed the same as the property of 

diesel derived from fossil fuels. In this work, the price of biodiesel was set as the same as the 

commercialized diesel, which was 3.88 $/gallon. 

    Equipment, energy, CO2 emissions and water recycle rate 

This work was not aiming to do a complete TEA and LCA analysis for the whole procedure of 

hybrid processing, but instead to compare the three different fermentation systems via economic 

and environmental impacts. Therefore, the analysis focused on the equipment for the three 

systems. Equipment related to this work is listed in Appendix A. The energy used in this plant 
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was assumed to be obtained from solar thermal energy. Also, the CO2 produced in the 

fermentation was assumed to be absorbed by cells. Therefore there was no CO2 emissions in this 

analysis. The water recycle rate was set as 90% for all of the systems. 

    Flow chart, boundaries and functional units 

Figure 2 shows the flow chart for the fermentation systems. For the perfusion system, total flow 

rate F equals perfusion flow rate F1. For the common continuous culture system, total flow rate 

equals bleeding flow rate F2. For the perfusion – bleeding system, total flow rate equals the sum 

of F1 and F2. The dash line shows the boundary of the analysis in this work. The functional unit 

chosen in this work is one gallon of biodiesel. 

RESULT AND DISCUSSION 

    TEA Results 

        Total costs comparisons 

Figures 3-7 show the TEA and LCA results. Detailed calculation procedures and assumptions are 

listed in the Appendixes. Figure 3a) shows the annual total costs for the three systems with 

different scales. For each of the three systems, annual total costs increased with the increase of 

scale. For each scale, the total costs show same order: continuous < perfusion < perfusion – 

bleeding system. Figure 3b) shows the total costs per gallon of biodiesel for the three systems 

with different scales. For each of the three systems, total costs per gallon of biodiesel decreased 

with the increase of scale. For each size, the total costs per gallon biodiesel shows same order, 

perfusion – bleeding system < continuous < perfusion. With the increase of scale, the differences 

of total costs per function unit among the three systems become smaller. Scale efficiency can be 

found with these three systems and perfusion – bleeding system has the least total costs per 

function units. 
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        Profit comparisons 

Figure 4a) and Figure 4b) show the total profits and profits per gallon of biodiesel for the three 

systems with different scales. For all of these three systems, with larger scale, profits and profits 

per function unit increase. For all of the three scales, the profits and profits per functional unit 

show the same order, perfusion < continuous < perfusion – bleeding system. With an increase of 

scale, the differences of profits per functional unit among the three systems become smaller. 

Perfusion – bleeding is most profitable among these three systems. 

    LCA Results 

        Energy consumption comparisons 

Figure 5a) shows the annual energy consumption for the three systems with different scales. For 

each of the three systems, annual energy consumption increased with the increase of scale. For 

each scale, the energy consumption shows the same order, perfusion < continuous < perfusion – 

bleeding system. Figure 5b) shows the energy consumption per gallon of biodiesel for the three 

systems with different scales. For each of the three systems, energy consumption per gallon of 

biodiesel decreased with an increase of scale. For each size, the energy consumption per gallon 

of biodiesel shows the same order, perfusion – bleeding system < continuous < perfusion. With 

an increase of scale, the differences of energy consumption per functional unit among the three 

systems become smaller. Scale efficiency can be seen and the perfusion - bleeding system has 

the least energy consumption per functional unit. 

        Net energy production comparisons 

Figure 6a) and Figure 6b) show the net energy production and net energy production per gallon 

of biodiesel for the three systems with different scales. For all of these three systems, with larger 

scale, net energy production and net energy production per gallon of biodiesel increase. For all of 
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the three scales, the net energy production and net energy production per functional unit show 

the same order, perfusion < continuous < perfusion – bleeding system. With the increase of 

scale, the differences in net energy per functional unit among the three systems become smaller. 

Perfusion – bleeding produces the most net energy among these three systems. 

        Water usage comparisons 

Figure 7a) shows the annual water usage for the three systems with different scales. For each of 

the three systems, annual water usage increases with the increase of the plant scale. For each 

scale, the water usage shows same order, perfusion < continuous < perfusion – bleeding system. 

Figure 7b) shows the water usage per gallon of biodiesel for the three systems with different 

scales. For each of the three systems, water usage per gallon of biodiesel does not increase with 

the increase of the plant scale. For each size, the water usage per gallon biodiesel shows same 

order, perfusion <perfusion – bleeding system < continuous. Scale efficiency could not be found 

and perfusion system had the least energy consumption per function unit. 

CONCLUSIONS 

Scale efficiency can be found both for TEA and LCA results, except for water usage. Perfusion 

system had the least water usage per functional unit, while perfusion – bleeding system had the 

lowest total costs per functional unit, highest profits per functional unit, lowest energy 

consumption per functional unit, and highest net energy production per functional unit. In 

conclusion, the perfusion - bleeding system had the advantage over other two systems but needs 

a higher water recycle rate. 

 

 



www.manaraa.com

2014 ASABE – CSBE/SCGAB Annual International Meeting Paper Page 9 

 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge NSF Iowa ESPCoR, NSF Energy for Sustainability (CBET-

1133319), Iowa Energy Center (#12-06), and Iowa State University Bailey Award for financial 

support of this project. 

 

 

Table 1 Comparison of the parameters obtained by different culture methods [Wen et al, 2003] 
Category Unit perfusion Continuous Perfusion-bleeding 

Max. biomass productivity  g*L‐1 *day‐1 2.09 2.82 6.75

Biodiesel productivity g*L‐1 *day‐1 0.25 0.34 0.80

Dilution rate day‐1 0.27 0.6 1.27*

Substrate assimilation efficiency % 78.5 50 82.5

Feed substrate concentration g*L‐1 4 2 2

Advantage 
 

Alleviating 
metabolites 
inhibition 

Continuous 
cell-harvest 

Continuous cell-harvest 
and alleviating 

inhibition 
     

Disadvantage 
 

Continuous cell-
harvest not 
available 

Metabolites 
inhibition 

Complex in operation 

*perfusion rate is 0.6 day‐1 and bleeding rate is 0.67 day‐1 
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Figure 1. Sketches for perfusion, continuous and perfusion – bleeding systems 

 

  

Perfusion 
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1 

Continuous  
F = F

2 

Perfusion – Bleeding 
F = F

1+ F
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                           Mass flow 

                           Energy flow 

                           Water flow 

                           Boundary of analysis 

 

Figure 2. Flow chart for the fermentation systems 
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Figure 3. Total costs analysis for three systems with different scales. a) annual total costs 

comparison b) the total costs per gallon of biodiesel comparison 
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Figure 4. Profits analysis for three systems with different scales.   a) annual profits comparison 

b) profits per gallon of biodiesel comparison 
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Figure 5. Energy consumption for three systems with different scales. a) annual total energy 

consumption comparison b) energy consumption per gallon of biodiesel comparison 
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Figure 6. Net energy production analysis for three systems with different scales.  a) annual net 

energy production comparison b) net energy production per gallon of biodiesel comparison 
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Figure 7. Water usage analysis for three systems with different scales.  a) annual water usage 

comparison b) water usage per gallon of biodiesel comparison 
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APPENDIX A.  Equipment list 

Equipment List 

Section  EQUIPMENT TITLE  VENDOR  DESCRIPTION  HP  MATERIAL  Number 
reqd  $ 

Pretreatment 
In‐line Mixer  KOMAX  Kynar Lined ‐ 600 gpm H2O ‐ 5 gpm acid     SS304  1  6,000  

Agitator  Andritz  Side‐mounted, 3 x 75 hp. ( 170 kW)  170 kW  316LSS  1  INCLUDED 

Media 
preparation 

In‐line Mixer  KOMAX  Kynar Lined ‐ 600 gpm H2O ‐ 5 gpm acid     SS304  1  6,000  

Agitator  Andritz  Side‐mounted, 3 x 75 hp. ( 170 kW)  170 kW  316LSS  1  INCLUDED 

Seed 
preparation 

Seed Fermentor  Mueller  80,000 gal, 1 atm, 28 °C, Internal coil     SS316  3  400,500  

Agitator  Lotus     30 hp  SS304  1  52,500  

Acetic acid 
Fermentation 

Ethanol Fermentor  Mueller  1,000,000 gallon ea.     304SS  2  844,000  

Agitator  Lotus     30 hp  SS304  1  52,500  

Solid‐Liquid 
Separator for 
perfusion  Larox              35,000,000  

pump for SF5  ADI  2500 gpm submersible rail mounted  50 hp  CS     231,488  

pump for media  ADI  2500 gpm submersible rail mounted  50 hp  CS     231,488  

pump for seed  ADI  2500 gpm submersible rail mounted  50 hp  CS     231,488  

Harvest  Solid‐Liquid 
Separator for Harvest  Larox              35,000,000  

Oil extraction 

In‐line Mixer  KOMAX  Kynar Lined ‐ 600 gpm H2O ‐ 5 gpm acid     SS304  1  6,000  

Agitator  Andritz  Side‐mounted, 3 x 75 hp. ( 170 kW)  170 kW  316LSS  1  INCLUDED 

pump for separator  ADI  2500 gpm submersible rail mounted  50 hp  CS     231,488  

Solid‐Liquid 
Separator for Harvest  Larox              35,000,000  
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APPENDIX B-1.  TEA calculations 

     Unit  Perfusion  Continuous  Perfusion bleeding 
Small scale  Annualized total costs  $/year  31841777.70 18861973.96 38709960.47

Annualized benefit  $/year  231248238.68 293880931.73 699317029.87

Annualized total costs per gallon biodiesel  $/year/gallon  0.59 0.26 0.22

Annualized total revenues per gallon 
biodiesel  $/year/gallon  4.29 4.04 4.02

Annualized "profits"  $/year  199406460.99 275018957.77 660607069.40

Annualized "profits" per gallon biodiesel  $/year/gallon  3.70 3.78 3.79

Intermediat
e scale 

Annualized total costs  $/year  171770307.55 109934444.64 230091591.56

Annualized benefit  $/year  2203925231.19 2882299724.35 6876675560.60

Annualized total costs per gallon biodiesel  $/year/gallon  0.32 0.15 0.13

Annualized total revenues per gallon 
biodiesel  $/year/gallon  4.09 3.96 3.95

Annualized "profits"  $/year  2032154923.65 2772365279.70 6646583969.05

Annualized "profits" per gallon biodiesel  $/year/gallon  3.77 3.81 3.82

Large scale  Annualized total costs  $/year  1018288616.41 744036307.94 1569222504.09

Annualized benefit  $/year 
21507200629.5

8 28554557013.59 68209973865.74

Annualized total costs per gallon biodiesel  $/year/gallon  0.19 0.10 0.09

Annualized total revenues per gallon 
biodiesel  $/year/gallon  3.99 3.92 3.92

Annualized "profits"  $/year 
20488912013.1

6 27810520705.65 66640751361.64

Annualized "profits" per gallon biodiesel  $/year/gallon  3.80 3.82 3.83
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APPENDIX B-2.  LCA calculations 

     Unit Perfusion Continuous Perfusion‐bleeding
Small scale  Energy consumed  MJ/year  26072548.27  27532200.24  35390326.58 

Energy Produced  MJ/year  26329516.09  35525949.94  85035518.47 

Net energy production  MJ/year  256967.82  7993749.71  49645191.90 

CO2‐eq  kg/year  0.00  0.00  0.00 

Water usage  metric ton/year  18468.00  42120.00  89154.00 

energy consumption per gallon biodiesel  MJ/year/gallon  0.48  0.38  0.20 

Net energy production per gallon 
biodiesel  MJ/year/gallon  0.00  0.11  0.29 

Water usage per gallon biodiesel  kg/year/gallon  0.34  0.58  0.51 

Intermediat
e scale 

Energy consumed  MJ/year  63683580.45  78280100.12  156861363.52 

Energy Produced  MJ/year  263295160.91  355259499.40  850355184.74 

Net energy production  MJ/year  199611580.46  276979399.29  693493821.22 

CO2‐eq  kg/year  0.00  0.00  0.00 

Water usage  metric ton/year  184680.00  421200.00  891540.00 

energy consumption per gallon biodiesel  MJ/year/gallon  0.12  0.11  0.09 

Net energy production per gallon 
biodiesel  MJ/year/gallon  0.37  0.38  0.40 

Water usage per gallon biodiesel  kg/year/gallon  0.34  0.58  0.51 

Large scale  Energy consumed  MJ/year  439793902.26  585759098.92  1371571733.01 

Energy Produced  MJ/year  2632951609.06  3552594994.04  8503551847.44 

Net energy production  MJ/year  2193157706.80  2966835895.12  7131980114.43 

CO2‐eq  kg/year  0.00  0.00  0.00 

Water usage  metric ton/year  1846800.00  4212000.00  8915400.00 

energy consumption per gallon biodiesel  MJ/year/gallon  0.08  0.08  0.08 

Net energy production per gallon 
biodiesel  MJ/year/gallon  0.41  0.41  0.41 

Water usage per gallon biodiesel  kg/year/gallon  0.34  0.58  0.51 
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